数据分析技术方法有哪些-

网上有关“数据分析技术方法有哪些?”话题很是火热,小编也是针对数据分析技术方法有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1.可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2.数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3.预测性分析

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4.语义引擎

非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。

5.数据质量和数据管理

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。

数据挖掘在管理会计中的重要意义

数据挖掘的入门概念

1 数据挖掘

数据挖掘(Data Mining,简称DM),是指从大量的数据中,挖掘出未知的且有价值的信息和知识的过程。

2 机器学习 与 数据挖掘

与数据挖掘类似的有一个术语叫做”机器学习“,这两个术语在本质上的区别不大,如果在书店分别购买两本讲数据挖掘和机器学习的书籍,书中大部分内容都是互相重复的。具体来说,小的区别如下:

机器学习:更侧重于技术方面和各种算法,一般提到机器学习就会想到语音识别,图像视频识别,机器翻译,无人驾驶等等各种其他的模式识别,甚至于谷歌大脑等AI,这些东西的一个共同点就是极其复杂的算法,所以说机器学习的核心就是各种精妙的算法。

数据挖掘:更偏向于“数据”而非算法,而且包括了很多数据的前期处理,用爬虫爬取数据,然后做数据的清洗,数据的整合,数据有效性检测,数据可视化(画图)等等,最后才是用一些统计的或者机器学习的算法来抽取某些有用的“知识”。前期数据处理的工作比较多。

所以,数据挖掘的范畴要更广泛一些。

3 数据挖掘所覆盖的学科

数据挖掘是一门交叉学科,覆盖了统计学、计算机程序设计、数学与算法、数据库、机器学习、市场营销、数据可视化等领域的理论和实践成果

4 数据挖掘的误区

误区一:算法至上论。认为数据挖据是某些对大量数据操作的算法,这些算法能够自动地发现新的知识。

误区二:技术至上论。认为数据挖据必须需要非常高深的分析技能,需要精通高深的数据挖掘算法,需要熟练程序开发设计。

这两种认知都有一定的偏颇。实际上,数据挖掘本质上是人们处理商业问题的方法,通过适量的数据挖掘来获得有价值的结果,技术在随着大数据时代的来临变得愈发重要,但是最好的数据挖掘工程师往往是那些熟悉和理解业务的人。

5 数据挖掘能解决什么问题

商业上的问题多种多样,例如:

“如何能降低用户流失率?”

“某个用户是否会响应本次营销活动?“

"如何细分现有目标市场?"

“如何制定交叉销售策略以提升销售额?”

“如何预测未来销量?”

从数据挖掘的角度看,都可以转换为五类问题:

分类问题

聚类问题

回归问题

关联分析

推荐系统

5.1 分类问题

简单来说,就是根据已经分好类的一推数据,分析每一类的潜在特征建立分类模型。对于新数据,可以输出新出具属于每一类的概率。

比如主流邮箱都具备的垃圾邮件识别功能:一开始,正常邮件和垃圾邮件都是混合在一起的,如果我们手工去点击哪些是垃圾邮件,逐渐的,垃圾邮件就会自动被识别放到垃圾文件夹。如果我们对于混在正常邮件中的垃圾持续进行判断,系统的识别率就会越来越高。我们人工点击判断,相当于预先分类(两类:垃圾邮件和非垃圾邮件),系统就会自己学习两类邮件的特征建立模式,对于新邮件,会根据模式判断属于每个类别的可能性。

分类算法示意

5.2 聚类问题

和分类算法是不同概念,但是工作中业务人员经常误用。 聚类的的目的也是把数据分类,但类别并不是预先定义的,算法根据“物以类聚”的原则,判断各条数据之间的相似性,相似的就归为一类。

比如我有十万消费者的信息数据,比如包括性别,年龄,收入,消费等,通过聚类的方法事可以把这些数据分成不同的群,理论上每群用户内都是相似性较高的,就可以覆盖分群用户制定不同的策略

聚类算法示意

5.3 回归问题

回归问题和分类问题有点类似,但是回归问题中的因变量是一个数值,而分类问题,最终输出的因变量是一个类别。简单理解,就是定义一个因变量,在定义若干自变量,找到一个数学公式,描述自变量和因变量之间的关系。

比如,我们要研究房价(Y),然后收集房子距离市中心的距离(X1),面积(X2),收集足够多的房子的数据,就可以建立一个房价和距离、面积的方程式(例如Y=aX1+bX2),这样给出一个新的距离和面积数据,就可以预测这个房子的价格。

回归问题示意

5.4 关联分析

关联分析主要就是指”购物篮分析“,很有名气案例是啤酒与尿布的故事,”据说“这是一个真实的案例:沃尔玛在分析销售记录时,发现啤酒和尿布经常一起被购买,于是他们调整了货架,把两者放在一起,结果真的提升了啤酒的销量。后来还分析背后的原因,说是因为爸爸在给宝宝买尿布的时候,会顺便给自己买点啤酒……

所以,关联分析就是基于数据识别产品之间潜在的关联,识别有可能频繁发生的模式。

5.5 推荐系统

利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。也就是平时我们在浏览电商网站、视频网站、新闻App中的"猜你喜欢"、“其他人也购买了XXX”等类似的功能。

5.6 数据挖掘的工作流程

数据挖掘的通用流程叫做CRISP-DM(Cross Industry Standard Process-Data Mining)数据挖掘方法论。

CRISP-DM

6.1 商业理解

商业理解阶段主要完成对商业问题的界定,以及对企业内外部资源进行评估与组织,最终确定将企业的商业目标转化为数据挖掘目标,并制定项目的方案

6.2 数据理解

了解企业目前数据现状,提出数据需求,并尽可能多的收集数据。通过初步的数据探索,快速了解数据的质量

6.3 数据准备

在建立数据挖掘模型之前对数据做最后的准备工作,主要是把收集到的各部分数据关联起来,形成一张最终数据宽表。这个阶段其实是耗时最长的阶段,一般会占据整个数据挖掘项目的70%左右的时间,包括数据导入、数据抽取、数据清洗、数据合并、新变量计算等工作。

6.4 模型构建

模型构建是数据挖掘工作的核心阶段。主要包括准备模型的训练集和验证集,选择并使用适当的建模技术和算法,模型建立,模型效果对比等工作

6.5 模型评估

模型评估主要从两个方面进行评价:

1)技术层面:

- 设计对照组进行比较。

- 根据常用的模型评估指标进行评价,如命中率、覆盖率、提升度等

2)业务经验:业务专家凭借业务经验对数据挖掘结果进行评估

6.6 模型部署

将数据挖掘成果程序化,将模型写成存储过程固化到IT平台上,并持续观察模型衰退变化,在发生模型衰退时,引入新的变量进行模型优化。

  摘要 数据挖掘是从海量数据中发现和提取知识和信息的过程。在管理会计领域中运用数据挖掘技术,寻求和发现更多的企业顾客、供应商、市场以及内部流程优化的信息,将为企业决策者提供更为广泛而有效的决策依据,提高企业战略竞争能力。本文简要介绍了数据挖掘的基本概念和方法,在此基础上重点分析了数据挖掘技术在作用成本和价值链分析,产品、市场和顾客分析以及财务风险防范等方面的应用。

  关键词 数据挖掘 信息 管理会计 应用

  引言

 近年来,数据挖掘技术引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的知识和信息。根据美国GAO(General Accounting Office)的报告,联邦政府利用数据挖掘技术在提高政府服务水平、分析科学数据、管理人力资源、侦察犯罪和恐怖活动等方面发挥了巨大的作用。尤其是在9·11以后,美国的反恐活动需要从大量的数据中搜寻有用的信息,数据挖掘技术功不可没。除此以外,数据挖掘也被广泛用于商业活动。根据Thomas G, John J和Il-woon Kim对财富500强企业的CFO的调查,在收到的有效反馈中,65%的企业正在使用数据挖掘技术。支持使用数据挖掘技术的企业称数据挖掘技术的有效使用能够为企业创造2000到2400万的净利润。而在对数据挖掘使用领域的调查中发现:24%用在会计领域,42%用在金融领域,用在信息系统和市场领域分别占19%和5%。目前数据挖掘技术的应用多集中在金融保险、医疗保健、零售部门和电信部门。而对数据挖掘在提高企业内部经营管理、构筑企业竞争优势方面的应用鲜有提及。

  一、数据挖掘技术的含义

 数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。

  二、数据挖掘的方法和基本步骤

  (一)数据挖掘的主要方法

 常用的数据挖掘方法主要有决策树(Decision Tree)、遗传算法(Genetic Algorithms)、关联分析(Association Analysis)、聚类分析(Cluster Analysis)、序列模式分析(Sequential Pattern)以及神经网络(Neural Networks)等。

  (二)数据挖掘的基本步骤

 SAS研究所提出的SEMMA方法是目前最受欢迎的一种数据挖掘方法,其描述的数据挖掘的大致过程包括取样(Sample)、探索(Explore)、修改(Modify)、模型(Model)和评价(Assess)。

 1.数据取样

 在进行数据挖掘之前,首先要根据数据挖掘的目标选定相关的数据库。通过创建一个或多个数据表进行抽样。所抽取的样本数据量既要大到足以包含有实际意义的信息,同时又不至于大到无法处理。

 2.数据探索

 数据探索就是对数据进行深入调查的过程,通过对数据进行深入探察以发现隐藏在数据中预期的或未被预期的关系和异常,从而获取对事物的理解和概念。

 3.数据调整

 在上述两个步骤的基础上对数据进行增删、修改,使之更明确、更有效。

 4.建模

 使用人工神经网络、回归分析、决策树、时间序列分析等分析工具来建立模型,从数据中发现那些能够对预测结果进行可靠预测的模型。

 5.评价

 就是对从数据挖掘过程中发现的信息的实用性和可靠性进行评估。

  三、数据挖掘在管理会计中的运用

  (一)数据挖掘在管理会计中运用的重要意义

 1.提供有力的决策支持

 面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。

 2.赢得战略竞争优势的有力武器

 实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略的高度对企业的竞争环境、市场、顾客和供应商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。

 3.预防和控制财务风险

 利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据SEC的报告,美国银行、美国第一银行、联邦住房贷款抵押公司等数家银行已采用了数据挖掘技术。

  (二)数据挖掘在管理会计中的应用

 1.作业成本和价值链分析

 作业成本法以其对成本的精确计算和对资源的充分利用引起了人们的极大兴趣,但其复杂的操作使得很多管理者望而却步。利用数据挖掘中的回归分析、分类分析等方法能帮助管理会计师确定成本动因,更加准确计算成本。同时,也可以通过分析作业与价值之间的关系,确定增值作业和非增值作业,持续改进和优化企业价值链。在Thomas G, John J和Il-woon Kim的调查中,数据挖掘被用在作业成本管理中仅占3%。

 2.预测分析

 管理会计师在很多情况下需要对未来进行预测,而预测是建立在大量的历史数据和适当的模型基础上的。数据挖掘自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确的预测企业各项指标,作为决策的依据。例如对市场调查数据的分析可以帮助预测销售;根据历史资料建立销售预测模型等。

 3.投资决策分析

 投资决策分析本身就是一个非常复杂的过程,往往要借助一些工具和模型。数据挖掘技术提供了有效的工具。从公司的财务报告、宏观的经济环境以及行业基本状况等大量的数据资料中挖掘出与决策相关的'实质性的信息,保证投资决策的正确性和有效性。如利用时间序列分析模型预测股票价格进行投资;用联机分析处理技术分析公司的信用等级,以预防投资风险等。

 4.顾客关系管理

 顾客关系管理是提升企业竞争优势的有力武器。首先,要对顾客群体进行分类。通过对数据仓库的分类和聚类分析,可发现群体顾客的行为规律,从而对顾客进行分组,实行差别化服务;其次,对顾客的价值进行分析,根据帕累托定律,20%的客户创造了企业80%的价值。针对这种情况,公司可以从客户数据库中挖掘出这部分顾客,对这部分顾客的行为、需求以及偏好进行动态跟踪和监控,并根据不同的顾客群的不同特点提供相应的产品和服务,从而与顾客建立长期的合作关系,提高顾客保持力。如在电信部门,对电信数据进行多维分析有助于识别和比较不同顾客对于产品的不同需求,从而使企业提供更有特色的产品,为顾客提供更优质的服务。

 5.产品和市场分析

 品种优化是选择适当的产品组合以实现最大的利益的过程,这些利益可以是短期利润,也可以是长期市场占有率,还可以是构建长期客户群及其综合体。为了达到这些目标,管理会计师不仅仅需要价格和成本数据,有时还需要知道替代品的情况,以及在某一市场段位上它们与原产品竞争的状况。另外企业也需要了解一个产品是如何刺激另一些产品的销量的等等。例如,非盈利性产品本身是没有利润可言的,但是,如果它带来了可观的客户流量,并刺激了高利润产品的销售,那么,这种产品就非常有利可图,就应该包括在产品清单中。这些信息可根据实际数据,通过关联分析等技术来得到。

 6.财务风险分析

 管理会计师可以利用数据挖掘工具来评价企业的财务风险,建立企业财务危机预警模型,进行破产预测。破产预测或称财务危机预警模型能够帮助管理者及时了解企业的财务风险,提前采取风险防范措施,避免破产。另外,破产预测模型还能帮助分析破产原因,对企业管理者意义重大。在20世纪30年代,Smith和Winakor率先进行了破产预测的尝试。随后到了20世纪60年代,Altman利用多维判别式分析(Multivariate Discriminant Analysis)方法提出的Z-score破产预测模型取得了很大的成功,预测准确率高达90%以上。此后,数据挖掘技术包括多维判别式分析(Multivariate Discriminant Analysis)、逻辑回归分析(Logistic Regression Analysis)、遗传算法、神经网络以及决策树等方法在企业破产预测中得到了广泛的应用。

  四、结束语

 随着我国加入WTO,企业面临的竞争压力也越来越大。充分利用信息技术的最新成果,挖掘企业自身潜力,加强企业内部管理,提升企业竞争力刻不容缓。数据挖掘技术的推广应用虽然受到成本和技术的限制,但是如果能取得企业高层管理者的支持,数据挖掘的应用将会有很大的发展前景。

关于“数据分析技术方法有哪些?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(10)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 瑾萱心的头像
    瑾萱心 2025年12月09日

    我是司凯号的签约作者“瑾萱心”

  • 瑾萱心
    瑾萱心 2025年12月09日

    本文概览:网上有关“数据分析技术方法有哪些?”话题很是火热,小编也是针对数据分析技术方法有哪些?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。1...

  • 瑾萱心
    用户120901 2025年12月09日

    文章不错《数据分析技术方法有哪些-》内容很有帮助

联系我们:

邮件:司凯号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信